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Piscirickettsiosis (SRS) has been the most important infectious disease in Chilean salmon
farming since the 1980s. It was one of the first to be described, and to date, it continues to
be the main infectious cause of mortality. How can we better understand the
epidemiological situation of SRS? The catch-all answer is that the Chilean salmon
farming industry must fight year after year against a multifactorial disease, and
apparently only the environment in Chile seems to favor the presence and persistence
of Piscirickettsia salmonis. This is a fastidious, facultative intracellular bacterium that
replicates in the host’s own immune cells and antigen-presenting cells and evades the
adaptive cell-mediated immune response, which is why the existing vaccines are not
effective in controlling it. Therefore, the Chilean salmon farming industry uses a lot of
antibiotics—to control SRS—because otherwise, fish health and welfare would be
significantly impaired, and a significantly higher volume of biomass would be lost per
year. How can the ever-present risk of negative consequences of antibiotic use in salmon
farming be balanced with the productive and economic viability of an animal production
industry, as well as with the care of the aquatic environment and public health and with the
sustainability of the industry? The answer that is easy, but no less true, is that we must
know the enemy and how it interacts with its host. Much knowledge has been generated
using this line of inquiry, however it remains insufficient. Considering the state-of-the-art
summarized in this review, it can be stated that, from the point of view of fish immunology
and vaccinology, we are quite far from reaching an effective and long-term solution for the
control of SRS. For this reason, the aim of this critical review is to comprehensively discuss
the current knowledge on the interaction between the bacteria and the host to promote
the generation of more and better measures for the prevention and control of SRS.
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PISCIRICKETTSIOSIS:
THE USUAL ENEMY

Piscirickettsiosis (SRS) is caused by the Gram-negative
facultative intracellular bacterium Piscirickettsia salmonis,
which belongs to the subdivision of gamma-Proteobacteria
with Coxiella and Francisella genera (1). P. salmonis has been
confirmed as the causative agent for SRS in coho salmon
(Oncorhynchus kisutch), Atlantic salmon (Salmo salar), and
rainbow trout (Oncorhynchus mykiss) in Norway, Canada,
Scotland, Ireland, and Chile (1). However, SRS especially
affects salmon farming in Chile. In 2020, SRS was responsible
for 47.8% and 67.3% of mortality related to infectious diseases
and 11.7% and 10.7% of total mortality in the production of
Atlantic salmon and rainbow trout, respectively (2). The most
important determinants of the prevalence of SRS are the number
of infected farms in upstream waters, followed by seawater
salinity and temperature (3). On downstream farms of infected
farms, the prevalence of SRS at 25 weeks of the cycle was close to
100%; while on farms with little or no exposure to infected
upstream- farms, the prevalence only reached ~10% at week 56.
Similarly, the prevalence of SRS within a group of concessions or
“neighbourhoods” reached 100% at an average of 46 weeks after
fallowing (4).

At the same time, we observed an average reduction of 18.3%
in the volume of antimicrobials used in the Chilean salmon
industry between 2016 and 2019, although during 2020, there
was a slight increase of 7.6% compared to 2019 (5). This is very
important because a median of 93.5% of the total volume of
antimicrobials used between 2017 and 2020 was used for SRS
control. These results could be a consequence of the positive
impact of the health strategy for SRS control based on a specific
official epidemiological surveillance program, improved genetic
resistance plans, regulatory changes, and good production
practices, including animal welfare aspects, lower stocking
densities, fallow periods, vaccination, among other practices.
However, the slight increase observed in 2020 is an early
warning indicator that has been observed, along with the
detection of P. salmonis, the presentation of earlier clinical
findings of SRS after transfer of smolts to seawater, and
increased SRS-related mortality, all of which are indicators that
support the relative efficacy of commercially available vaccines to
control the disease.

P. salmonis enters fish mainly through mucosal surfaces such
as the skin and gills and, to a lesser extent, through the intestine
(6–8). P. salmonis can even cross the intact skin in healthy fish
(7), and although P. salmonis is not significantly negatively
affected under exposure to the skin mucus of rainbow trout
and Atlantic salmon over time, the cytotoxic effect of the
bacterium pre-exposed to salmonid skin mucus is delayed (9).
Rozas-Serri et al. (8) first reported a cohabitation challenge for P.
salmonis, which was used to comparatively describe SRS
pathogenesis using LF-89 and EM-90 isolates. This study
concluded that the pathogenesis of postsmolt Atlantic salmon
infected with LF-89-like and EM-90-like P. salmonis isolates was
different. Fish infected with EM-90 showed higher cumulative
Frontiers in Immunology | www.frontiersin.org 2
mortality and a shorter time to mortality than fish infected with
LF-89. EM-90 isolate produces an acute systemic and
hemorrhagic disease characterized by lesions in all internal
organs, whereas the most frequent internal lesions in fish
infected with LF-89 show the more classical pathological
picture of SRS with splenomegaly, renomegaly, large yellowish-
whi t e nodule s in the k idney and l iver , fibr inous
pseudomembranes in the liver and heart, hydropericardium
and ecchymosis in the liver (Figure 1). By histology, the
yellowish-white nodules were found to be granulomas typically
consisting of central necrosis along with the presence of bacteria
and were surrounded by macrophages at different stages,
neutrophils, putative dendritic cells (DCs), and natural killer
cells; finally, all nodules are surrounded by putative T- and B-
cells (Figure 1). However, a detailed molecular and cellular
characterization of the granuloma arising during acute and
chronic P. salmonis infection remains incomplete, mainly
because antibodies to identify the different cell populations
with confidence do not exist or are not accessible. P. salmonis
induces flagellin-dependent tlr5 activation, which results in the
up-regulation of tnfa, il1b, il8 and il16 (10–13), and promotes an
intense proinflammatory response supported by leukocyte
activation, and chemotaxis of neutrophils and macrophages
towards the site of infection. At the same time, fish infected
with P. salmonis showed up-regulation of relb and down-
regulation of nfkbiz, which determine the activation of the NF-
kB pathway (10, 12), promoting the up-regulation of genes
encoding acute phase proteins (lect2, ltbr4, gpr84 and gpr43)
and chemokines (cxcl7, cxcl9, cxcl10, cxcl12 and cxcr1) (10, 12,
13). Fish from both groups showed alterations in different blood
biochemical parameters related to liver and kidney function,
although the most severe alterations were present in fish infected
with EM-90. In addition, the presence of P. salmonis was
detected in the gills of coinhabiting fish of both groups at 21
days post-infection, confirming that the gills are the main point
of entry of the bacterium into the host. Furthermore, the
detection of the bacterium in the gills at 21 dpi and the
occurrence of the first deaths at 36 dpi in fish with EM-90 and
at 40 dpi in fish with LF-89 could indicate that these isolates have
incubation periods of 15 and 20 days, respectively.

Cohabitation and immersion challenges are generally
considered a better strategy compared to intraperitoneal injection
challenges in termsofmimickingnatural infection (8, 14, 15). There
are only small differences between the intraperitoneal and
cohabitation challenge models considering mortality and
pathological changes (8, 14, 15). Meza et al. (14) reported that the
incubationperiodwas followedbyanacuteoutbreak,withmortality
reaching 100% in both challenged groups. Conversely, Rozas-Serri
et al. (8) described a cumulative mortality of 84% and 100% in fish
infected intraperitoneally with LF-89 and EM-90, respectively, but
in fish infected using a cohabitation challenge model, the
cumulative mortality reached 70 and 95%. In both studies, the
pathological and histopathological changes were more visible
during the clinical phase of the disease. Nevertheless, the death of
fish in the cohabitant group was recorded earlier in the study from
Meza et al. (14) than Rozas-Serri et al. (8) (28 dpc vs. 36 dpc,
March 2022 | Volume 13 | Article 856896
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respectively), which could be due to the environmental variables of
the experimental design; e.g., fishwere kept in seawater at 32‰ and
15°C in the first case, while in the second case, the study was
conducted in brackish water at 15‰ and 12°C. Finally, Long et al.
(15) demonstrated that in tanks containing infected Atlantic
salmon, using the immersion challenge model, the bacterium
was first detected at 12 dpi, and levels peaked at 36 dpi, 3 days
before the mean day of death. From 44 dpi onward, P. salmonis
levels in the water column remained close to the detection limit
and coincided with the cessation of acute mortality. Thus, the
highest levels of P. salmonis are shed shortly before death, and
Atlantic salmon experiencing an SRS outbreak aremost infectious
between 18 and 42 dpi.

Commercial vaccines are dominated by bacterin, recombinant
(1) and attenuated live bacterial vaccines, administered primarily
Frontiers in Immunology | www.frontiersin.org 3
in water-in-oil emulsions (25) (Table 1). Regardless of the species
of salmon farmed, these vaccines against SRS have not been fully
protective in reducing total mortality or in delaying the time to
onset of the first SRS outbreak under field conditions in Chile (1,
26, 27). Oral immunization is an attractive alternative, primarily
because of its lower cost and ease of administration to farmed fish.
It has been suggested that several oral immunizations for SRS are
essential to maintain the humoral adaptive immune response in
farmed fish, expressed in terms of SRS-specific antibodies, and to
keep the fish protected throughout the entire production cycle (22,
28). This scenario might be biologically plausible in the case of
diseases caused by viruses or extracellular bacteria, but the
facultative intracellular nature of P. salmonis requires that a
truly effective vaccine must activate the cell-mediated adaptive
(CMI) response for a sufficiently long time to protect the salmon
FIGURE 1 | Macroscopic pathology and microscopic lesions in the liver associated with SRS infection. (A) Pale liver with subcapsular and circular reddish and gray–
yellow mottled areas approximately 1-6 mm in diameter. The dashed red line delineates the borders of a gray–white discrete nodule characteristic of P. salmonis
infection. (B) Multifocal necrosis of hepatocytes, diffuse infiltration of inflammatory cells and focal granuloma and/or multifocal coalescent granulomas. The dashed
red line delineates the borders of a focal granuloma. Bar. 50 µm. (C) Immunolocalization of extracellular P. salmonis in the central zone of necrotic lesions and
intracellular P. salmonis within macrophages using immunohistochemistry. Bar. 50 µm. (D) The yellowish-white nodules are granulomas typically consisting of a
central necrosis with the presence of the bacteria, surrounded by macrophages at different stages, neutrophils, putative dendritic cells, and natural killer cells; all
of these are surrounded by lymphocytes (putative T- and B-cells).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rozas-Serri Immunity Against Piscirickettsia Salmon
population throughout the production cycle in seawater.
Unfortunately, P. salmonis precisely modulates and
compromises the CMI response in infected fish as a mechanism
to escape the host defense (10–13, 29, 30). Other intracellular
bacteria of importance in aquaculture, such as Renibacterium
salmoninarum and Edwardsiella tarda, modulate CMI in a
similar way. Rozas-Serri et al. (31) demonstrated that load of R.
Frontiers in Immunology | www.frontiersin.org 4
salmoninarum had a significant positive correlation with the
down-regulation of ifng, eomes, tbet, gata3, il2, il12, cd8 and
mpeg1 (perforin) in the head-kidney of Atlantic salmon pre-
smolts; consequently, R. salmoninarum did not trigger a CMI
response in fish infected at 11 or 15°C. Yamasaki et al. (32) showed
the important role of CMI rather than humoral immunity against
E. tarda infection in ginbuna cross carp. Bacterial clearance in the
TABLE 1 | Summary of experimental studies on efficacy evaluation of injectable and oral vaccines, types of antigens used and availability of commercial vaccines.

Vaccines Antigen/laboratory Vaccine type Valence Vaccine efficacy Reference

Experimental Bacterin Inactivated whole-cell 1 Inconsistent results Smith et al.,
(16)

Outer surface protein A Recombinant subunit 1 83% RPS Kuzyk et al.,
(17)

Whole genome DNA 1 Mortality 80% Miquel et al.,
(18)

Bacterin Inactivated whole-cell (heat) 1 70,7% RPS Birkbeck
et al., (19)Inactivated whole-cell (formalin) 1 49,6% RPS

Hsp60/70 Recombinant subunit 1 Mortality 8% Wilhem et al.,
(20)

Hsp60/70 + FlgG Recombinant subunit 1 94,5% RPS Wilhem et al.,
(21)TbpB MltB Recombinant subunit 1 85% RPS

Omp27 FlaA Recombinant subunit 1 10,4% RPS
Inactivated whole-cell, P. salmonis
strain PS2C

Bacterin formulated in micromatrix for oral delivery 1 Protection by 1800
degree days

Tobar et al.,
(22)

P. salmonis LF-89 bacterial
membranes

bacterial proteoliposome + Montanide ISA 760 VG adjuvant
water-in-polymer

1 46,1% RPS; 36,3%
ARR; NNT = 3

Caruffo et al.,
(23)

P. salmonis LF-89 bacterial
membranes

bacterial proteoliposome + Montanide ISA 763 AVG adjuvant,
water-in-oil

1 20,7% RPS; 16,3%
ARR; NNT = 7

Immunogenic protein fraction 1 P1 - Immunogenic protein fractions + Montanide ISA 763 AVG
adjuvant 1:1 oil-in-PBS

1 89,6% RPS Pontigo et al.,
(24)

Immunogenic protein fraction 2 P2 - Immunogenic protein fractions + Montanide ISA 763 AVG
adjuvant 1:1 oil-in-PBS

1 8,3% RPS

Immunogenic protein fraction 3 P3 - Immunogenic protein fractions + Montanide ISA 763 AVG
adjuvant 1:1 oil-in-PBS

1 11,5% RPS

Commercial Agrovet Ltda. Inactivated whole-cell 1 N.I S.A.G. 2021
Agrovet Ltda. Inactivated whole-cell 3 N.I
Agrovet Ltda. Inactivated whole-cell 4 N.I
Agrovet Ltda. Inactivated whole-cell 5 N.I
Veterquimica S.A. Inactivated whole-cell 1 N.I
Veterquimica S.A. Inactivated whole-cell 2 N.I
Tecnovax Chile S.A. Inactivated whole-cell 1 N.I
Tecnovax Chile S.A. Inactivated whole-cell 2 N.I
Tecnovax Chile S.A. Inactivated whole-cell 3 N.I
Tecnovax Chile S.A. Inactivated whole-cell 4 N.I
Tecnovax Chile S.A. Inactivated whole-cell 5 N.I
Elanco Inactivated whole-cell 2 N.I
Pharmaq Inactivated whole-cell 2 N.I
Pharmaq Inactivated whole-cell 3 N.I
Pharmaq Inactivated whole-cell 4 N.I
Pharmaq Live-attenuated 1 N.I
Centrovet Ltda Inactivated whole-cell 1 N.I
Centrovet Ltda Inactivated whole-cell 2 N.I
Centrovet Ltda Inactivated whole-cell 3 N.I
Centrovet Ltda Inactivated whole-cell 4 N.I
Centrovet Ltda Inactivated whole-cell 5 N.I
Intervet Chile Ltda. Recombinant subunit 2 N.I
Intervet Chile Ltda. Recombinant subunit 3 N.I
Intervet Chile Ltda. Recombinant subunit 4 N.I
FAV Inactivated whole-cell 2 N.I
FAV Inactivated whole-cell 4 N.I
FAV Inactivated whole-cell 5 N.I
M
arch 2022 | Volume 13 |
Commercial vaccine information was taken from the official records of the Agriculture and Livestock Service (SAG), Chile. There are no efficacy results under field conditions in farmed
salmonids in Chile for any of these injectable vaccines, only the field results that the producing companies manage at the end of each culture cycle. RPS, relative percentage survival; ARR,
absolute risk reduction; NNT, treatment necessary number.
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kidney and spleen was observed after elevated cytotoxic activity
and increased numbers of CTLs, but E. tarda-specific antibody
titers did not increase until after bacterial clearance, suggesting
that induction of humoral immunity is late to provide protection.
The length of time that CD8+ cells remain active to “kill” infected
cells following infection with P. salmonis and/or vaccination is
unknown, so optimal levels of CD8+ cell activation capable of
conferring protection in salmon are also unknown. Moreover, the
extent to which mucosal vaccination can evoke protective
immunity against intracellular replicating bacteria remains
unclear, unlike in the case of viral and extracellular bacterial
infections, in which protective mechanisms have been widely
studied (33, 34). Hence, the practical conditions under which
intracellular vaccination translates into protective CMI responses
have not been determined for SRS vaccines.

Yamasaki et al. (35) also showed the importance of CMI
against E. tarda infection using vaccine trials comparing the
effects of live vs. formalin-killed bacteria. Live cell-vaccinated
fish showed high survival rates, high IFN-g and T-bet gene
expression levels, and increased CTLs. On contrary, all bacterin-
vaccinated fish died following E. tarda infection and induced high
IL4/13a and IL-10 expression levels, whereas Th1-like responses
were suppressed. Rozas-Serri et al. (29) showed that a bacterin P.
salmonis vaccinated-fish exhibited MHCI, MHCII, and CD4
overexpression but a significant downregulation of CD8b and
IgM, suggesting that the formalin-killed bacteria promoted the
CD4+ T-cell response but did not induce an immune response
mediated by CD8+ T cells or a humoral response. The level of SRS-
specific antibodies generated by vaccines and/or parenteral or oral
boosters does not correlate with the level of protection or a
reduction in the SRS-related mortality rate under field
conditions. For this reason, no significant differences are
observed between fish receiving a pentavalent injectable
vaccination plus an oral booster and those receiving the same
regimen but without the oral booster (27). Similarly, there is also
no difference in overall mortality or time to first outbreak in fish
receiving one or more saltwater booster vaccines and fish not
receiving the booster (26).

In the last four years, our research group has evaluated the
immune response of fish under field conditions against different
vaccines, including the live attenuated P. salmonis vaccine.
Overall, the activation of the innate immune response and the
cell-mediated adaptive response modulated by overexpression of
ifng, il2, il10, il12, il12, mhc1, cd4 and cd8 in the head kidney of
Atlantic salmon smolts at 24 hours postvaccination and 150-,
300-, 460- and 600-degree days before transfer to seawater were
observed. These findings are frequently noted in fish farmed in
open-flow water hatcheries at different water temperatures
(between 7 and 14°C) and in recirculation aquaculture systems
(RAS), but the response is always significantly better in fish kept
at higher temperatures (> 12°C). Acute and chronic exposure to
suboptimal temperatures often has suppressive effects on the
immune response of fish, especially on adaptive immunity (36).
Sanhueza et al. (37) demonstrated that behavioural fever in
ectotherms leads to a neuroimmune interaction that could
modulate the systemic inflammatory response during pathogen
Frontiers in Immunology | www.frontiersin.org 5
infection. Results from the last time point of the monitoring plan
conducted at 1,800-degree days postvaccination (1,200-degree
days in seawater) showed a reduction in cd4 and cd8 gene
expression, a time that usually coincides with the onset of the
first SRS outbreaks in Atlantic salmon seawater farms. The
downregulation of cd4 and cd8 at this point would indicate a
reduced CMI response, probably associated with the gradual use
of the different immune components previously induced by the
vaccine and/or associated with a natural challenge.

These results are consistent with the transient stimulation of
the CMI response described by Vargas et al. (38) in fish
immunized with the same vaccine under field conditions, as
they observed increased gene expression of ifna, ifng, cd4, cd8a,
il10 and tgfb at 5 days postvaccination but a decreased response
at 15 and 45 days postvaccination. However, the results of the
latter study were obtained from fish vaccinated with an injectable
booster vaccine in seawater when they were on average between 1
and 1.5 kg in weight. In Chile, 100% of Atlantic salmon smolts
entering the sea are vaccinated with a vaccine containing the P.
salmonis component, so these results could be influenced by
pentavalent injectable primo-vaccination and natural challenge
after entering seawater. Although we know that current vaccines
do not sufficiently activate the CMI response to protect fish
throughout the production cycle, current vaccines are important
in the relative control of SRS. Nevertheless, a decrease in
protection in terms of the time to the first detection of P.
salmonis and SRS outbreaks, an increased number of therapies,
and increased associated mortality, among other indicators, has
been noted.
PISCIRICKETTSIA SALMONIS:
A FASTIDIOUS BACTERIUM

P. salmonis is a facultative intracellular bacteriumbecause although
it infects lymphoid cells such as macrophages, monocytes and
nonlymphoid cells in vitro and in vivo (39, 40), it can be cultured
in vitro in solid and liquidmedia enrichedwith cysteine (41).Cortés
et al. (42) identified themetabolic characteristics of P. salmonis that
differentiate the two main clades of the species and demonstrated
that P. salmonis could benefit from different experimentally tested
carbon sources in newly definedmedia. The genome of P. salmonis
contains one circular chromosome of 3,184,851 bp and three
plasmids, pPSLF89-1 (180,124 bp), pPSLF89-2 (33,516 bp) and
pPSLF89-3 (51,573 bp) (43). The in silico analysis of several strains
of P. salmonis showed an open pangenome of 3463 genes and a
coregenome of 1732 genes (44). Plasmids are extrachromosomal
circular or linear double-strandedDNAmolecules that vary in size,
and some bacteria contain plasmids with no obvious functions that
are classified as cryptic.Ortıź-Severin et al. (45) identified four large
cryptic plasmids in the P. salmonis reference strain LF-89, in
addition to twelve putative virulence factors and two global
transcriptional regulators. These plasmids would be predicted to
be critical in the bacterium’s ability to adapt to the environment, as
they encode proteins related to nutrient mobilization, transport,
and utilization.
March 2022 | Volume 13 | Article 856896
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Mauel et al. (46) showed that P. salmonis isolated in different
parts of the world, including the reference strain LF-89, are closely
related to each other (over >99% similarity in their 16S, ITS and 23S
genes), but the Chilean isolate EM-90 is unique and genetically
divergent fromtheothers. Later, thesefindingswere confirmedwith
more evidence from evaluations of their genomic structures and
phylogenetic relationships to support the existence of two
genogroups of P. salmonis, LF-89 and EM-90 (44, 47–52). P.
salmonis pangenome LF-89 and EM-90 show 148 and 273 unique
proteins, respectively (44), and different geographical distribution
patterns and susceptibilities of salmon species have been described
(53). This notion has also been experimentally supported by studies
based on multilocus sequence typing (MLST) and PCR
amplification of 16S rRNA genes followed by restriction fragment
length polymorphism (PCR-RFLP) typing (51, 54). Although
different real-time TaqMan® PCR assays have been used for
several years by private diagnostic laboratories to identify and
discriminate between LF-89 and EM-90 isolates in the Chilean
salmon industry, a multiplex PCR protocol to differentiate both
genogroups has recently been reported (52).P. salmonis can survive
≥120 h and replicate in cell cultures enriched with Atlantic salmon
macrophages (55). This strategy would be induced by a limited
lysosomal response that could be associated with P. salmonis host
immune evasion mechanisms. Later, Pérez-Stuardo et al. (56)
showed that IgM bead treatment promotes lysosomal activity in
Atlantic salmonmacrophage-enriched cell cultures infectedwith P.
salmonis by reducing the lysosomal pH and increasing the
proteolytic activity within the lysosome, reducing the bacterial
load and the cytotoxicity induced by P. salmonis. Artificially
induced iron deprivation during P. salmonis infection in vitro and
in vivo using iron chelators generates a protective response of
infected cells coincident with a reduction in bacterial load and cell
damage (57, 58).

Although numerous virulence-related genes have been
identified in P. salmonis, only a few encoded virulence factors
Frontiers in Immunology | www.frontiersin.org 6
have been characterized (Table 2). Proteolytic enzymes are
important virulence factors because they are involved in cell
invasion and intracellular proliferation. P. salmonis can
synthesize and secrete siderophores (81), confirming its ability
to utilize different sources of iron. In addition, P. salmonis has
protease activity that increases significantly when the bacterium
infects cells (62). At the same time, genomic islands have been
described in the genomes of different P. salmonis strains (73),
which could explain the different virulence levels of P. salmonis
genogroups, pathogenesis (8, 14) and immune response observed
in both fish experimentally challenged with different P. salmonis
genogroups and vaccinated fish (11, 12, 14, 29). Intracellular
bacterial pathogens use different strategies that allow them to
adhere to, invade, and replicate in host cells and modulate
intracellular processes such as membrane trafficking, signaling
pathways, metabolism, and cell death and survival (85). One of the
strategies used by these bacteria is secretion systems (SSs), which
are complex multiprotein transmembrane nanomachines that
form a channel that allows for the exportation of different
molecules, including virulence effectors (86). P. salmonis is
deficient in organelle trafficking/intracellular multiplication
(Dot/Icm) secretion system genes and is classified as a type IVB
secretion system (T4SS) (74, 75), which has been described as the
main virulence mechanism of Legionella pneumophila and
Coxiella burnetii and is responsible for their intracellular
survival and replication (87). Temporal acidification of cell-free
media results in overexpression of P. salmonis genes that inhibit
phagosome-lysozyme fusion to prevent phagolysosome killing
(74). Complementarily, the Sec-dependent pathway and Type
4B secretion system are biologically active during in vitro P.
salmonis infection (76). The type VI (T6SS) and type III (T3SS)
secretion system is also present in the P. salmonis genome, but no
studies have demonstrated its functional mechanism.

Putative plasmid-encoded toxins are secreted in P. salmonis
extracellular vesicles (EVs) (64, 79, 80, 88), which suggests a
TABLE 2 | Virulence-related factors described in P. salmonis.

Virulence factor Function Reference

Lipopolysaccharide (LPS) Endotoxicity Vadovic (59); Fodorova (60); Vinogradov (61)
Proteases (metalloproteases,
elastases, etc)

Protease activity. Bacterial cell invasion and intracellular proliferation Figueroa (62)

Heat shock proteins Molecular chaperone. Survival and replication within macrophages Isla (63); Oliver (64); Oliver (65)
ISPsa2 Plasticity and adaptability Marshall (66); Gómez (67)
Biofilms Survival and persistence under stress conditions Marshall (68); Levipan (69); Oliver (70);

Santibañez (65)
Secreted extracellular products Cytotoxicity Rojas (71); Smith (72)
Genomic island (tcf, dnsa and liso) Cytotoxicity Lagos (73)
Dot/Icm proteins Interference with the endosomal maturation process to ensure intracellular

bacterial survival
Gómez (74); Labra (75); Cortés (76)

Secretion systems Intracellular survival and/or replication (T3SS, T4SS, T6SS) Gómez (74); Bohle (77); Ortiz-Severin (78)
OMV Bacterial pathogenesis Oliver (64); Lagos (79); Tandberg (80);
Toxins Bacterial toxins Oliver (64)
Iron metabolism Iron metabolism Calquin (81); Ortiz-Severin (78)

Sidrophores metabolism Calquin (81)
Pilus Secretion system Sánchez (82); Ortiz-Severin (78)
Flagellar Motion/T3SS Ortiz-Severin (78)
Stringent response Survival under nutrient starvation and other related stresses Zuñiga (83); Zuñiga (84); Ortiz-Severin (78)
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possible role in bacterial virulence of this important mobile genetic
element. Leiva et al. (89) identified 35 unique proteins in serum
EVs from P. salmonis-infected fish, including proteasome
subunits, granulins and major histocompatibility classes I
(MHC-I) and II (MHC-II). Therefore, these results suggest that
the release of EVs could be part of a mechanism in which host
stimulatory molecules are released from infected cells to promote
an immune response. Additionally, other mechanisms of
pathogenicity have been described in P. salmonis, such as outer
membrane vesicles (OMVs) containing different proteins related
to critical survival functions, plasmid-encoded toxins (64, 79, 80,
88) and type IV pili, which are filamentous structures on the
bacterial surface important for adherence to host cell surfaces (82)
(Table 3). Biofilms play an important role in bacterial
pathogenicity, as their physical and spatial arrangement impedes
access to antimicrobials and increases their resistance to
phagocytosis. P. salmonis forms viable, stable, and fish skin-
mucus tolerant biofilms on abiotic surfaces and under
conditions of severe nutrient starvation (69). The cytotoxic
response of the salmon head kidney cell line to P. salmonis
showed interisolate differences because LF-89 isolate biofilms
were sensitive to Atlantic salmon skin mucus during early
formation, whereas EM-90 isolate biofilms were more tolerant.
Complementarily, Santibañez et al. (90) showed that the
planktonic isolate EM-90 and the sessile LF-89 would generate
the highest levels of virulence in vitro by the modulation of the
proinflammatory response (il1b, il8, nfkb, and ikba). NaCl and Fe
significantly increase biofilm production. Oliver et al. (65)
suggested that the presence of Hsp60 (GroEL) in P. salmonis
OMVs would insinuate that they may be important in interacting
with host proteins and/or modulating biofilm formation.

Legionella pneumophila is an aquatic organism that interacts
with amoebae and ciliated protozoa as natural hosts, and this
interaction plays a central role in bacterial ecology and infectivity
(70). Declerck et al. (91) demonstrated that while L. pneumophila
was present in 100% offloating biofilms in anthropogenic aquatic
Frontiers in Immunology | www.frontiersin.org 7
systems, Naegleria spp. and Acanthamoeba spp. were present in
50-92% and 67-72% of floating biofilm samples, respectively.
Recently, Labra et al. (92) demonstrated that P. salmonis is
detected only in adults of the crustacean ectoparasite Caligus
rogercresseyi and that it is present only transiently after removal
of P. salmonis-infected hosts, but the bacterium is not detected in
the chalimus stages or in planktonic larvae of the parasites.
However, the relationship of P. salmonis with Neoparamoeba
perurans, a cosmopolitan marine amoeba and causative agent of
AGD, remains unclear.
THE INTRACELLULAR INVASION AND
SURVIVAL STRATEGY OF P. SALMONIS

More information is now available to understand the process of
invasion and survival of P. salmonis at the intracellular level (78,
83, 84). Although this knowledge remains to be validated in vivo
using fish ideally challenged by cohabitation or immersion and
under field conditions, it is an important step forward in the
systematization and understanding of bacterial biology in host
cells. However, like other intracellular bacteria in mammals and
fish, we usually see that this battle between P. salmonis and fish
defenses is won by the bacteria, probably because it has a wide
arsenal of highly efficient virulence factors that allow it to evade
the adaptive cell-mediated immune responses and modify the
cell-autonomous immunity of the fish cells to its benefit,
promoting a favorable environment for its replication and
chronic maintenance in animals (8).

P. salmonis can infect, survive, and replicate primarily within the
cytoplasmic vacuoles of macrophages and polymorphonuclear
leukocytes without inducing a characteristic cytopathic effect (40)
(Figure 2), although its replication in other dedicated phagocytic
cells, such as DCs and B cells, remains to be elucidated. While
macrophage biology has been characterized in mammals,
TABLE 3 | Major virulence-related proteins described in membrane vesicles of P. salmonis strain type LF-89.

Proteins Description Function

Pertussis_S1
superfamily

Pertussis toxin, subunit 1. Toxin

Enterotoxin A
superfamily

Heat-labile enterotoxin alpha chain Toxin

OM_channels
superfamily

Porin superfamily Porin

OmpA C-terminal domain of outer-membrane protein OmpA Bacterial adhesion, invasion, or intracellular survival as well as
evasion of host defenses or stimulators of pro-inflammatory
cytokine production

Porin F Peptidoglycan binding domains similar to the C-terminal domain of outer-
membrane protein OmpA

Porin

VirB9/CagX/
TrbG superfamily

VirB9/CagX/TrbG, a component of the type IV secretion system A component of the type IV secretion system

CsrA superfamily RNA-binding protein and a global regulator of carbohydrate metabolism genes This protein is a RNA-binding protein and a global regulator of
carbohydrate metabolizm genes facilitating mRNA decay

SrfB superfamily This family includes homologues of SsrAB is a two-component regulatory system
encoded within the Salmonella pathogenicity island SPI-2

This family includes homologues of SsrAB is a two-component
regulatory system

FliH superfamily Flagellar assembly protein FliH. A component of flagella
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macrophage differentiation and activation in teleost remain to be
adequately described. Macrophages have a high degree of plasticity
and can be activated by the classical (M1 or pro-inflammatory) or
alternative (M2 or anti-inflammatory) pathway (108). M1
macrophages are activated by IFN-g and TNF-a and produce
proinflammatory cytokines and ROS to protect against pathogens
(109). M2 macrophages are activated by il4/il13, il10, tgfb and are
characterized by inducing lower microbicidal activity,
immunosuppression and promoting cell growth and wound
healing (110, 111). In teleost monocytes/macrophages, inducible
nitric oxide synthase (iNOS) is anM1-type marker and arginase 2 is
an M2-type marker (112). Smith et al. (113) observed a change in
the morphology, phagocytic ability, and miRNA profile of Atlantic
salmon head-kidney leukocytes (HKLs) in vitro, showing that the
cells differentiate from “monocyte-like” (Day 1) to “macrophage-
like” (Day 5). At the same time, the abundance of some miRNAs in
EVs was significantly different from the abundance of miRNAs in
HKLs, suggesting that these miRNAs are involved in the immune
response and/or macrophage activation (114). Smith et al. (115)
revealed major changes in the transcriptome of HDLs at day 1 and
5, including changes in the expression of macrophage and immune-
related transcripts (csf1r, arg1, tnfa, mx2), lipid metabolism (fasn,
dhcr7, fabp6) and transcription factors related to macrophage
function and differentiation (klf2, klf9, irf7, irf8, stat1). Thus, the
HKLs population differentiates in vitro to become macrophages
without the addition of exogenous factors.

Macrophages infected with P. salmonis induce an anti-
inflammatory milieu, probably involved in the development of
its bacterial virulence mechanism to ensure replication and
survival (11, 12, 93). The impact of an infection depends on the
balance between the ability of macrophages to recognize and
destroy bacterial pathogens and the ability of pathogens to
disrupt the functions of these macrophages (112). Intracellular
pathogens share several mechanisms of subversion of host
immune responses (116), such as: (a) evasion of host immune
recognition such as modulation of microbial surfaces, secretion of
immunomodulators, antigenic variation, and concealment in
target cells or tissues; and (b) modulation and suppression of
host immune responses such as evasion of phagocytosis, innate
immune receptors, the complement system, cytokines or
chemokines, inhibition of apoptosis, resistance to host effector
mechanisms, and induction of inappropriate immune responses
such as immunosuppression and induction of Tregs. One of the
most important strategies used by P. salmonis is the evasion of
phago-lysosomal degradation (55, 56, 74, 76), but it is also capable
of activating a mechanism to subvert host defense by inhibiting
fusion with the host lysosomal compartment and altering
lysosomal pH (74). Moreover, P. salmonis can escapes into the
cytosol and replicate in the host cell cytoplasm (39). P. salmonis
can resist host effector mechanisms because it can persist in
macrophages (63), inhibiting apoptosis (40), inhibiting oxidative
stress processes, and promoting cell cycle (10, 12, 13, 78, 83).
Finally, P. salmonis induces an inappropriate immune response,
immunosuppression (10–13, 29), and differentiation of Tregs (94).

Upon entering macrophages through phagocytosis, P.
salmonis orchestrates the formation of vacuoles called
Frontiers in Immunology | www.frontiersin.org 8
P. salmonis-containing vacuoles (PCVs), and it evades the
lysosomal degradation pathway by escaping into the cytoplasm
(39, 40, 74). Clathrin and the actin cytoskeleton play pivotal roles
in P. salmonis internalization and multiplication, respectively
(12, 95, 96). PCVs are generated because P. salmonis fully
exploits disorganized and de novo synthesized actin in its
favor, generating tridimensional vacuoles, apparently made
exclusively of actin during the later stages of infection (95).
Clathrin-mediated endocytosis is a well-documented portal of
entry for many intracellular bacteria and viruses (117).
Phagocytosis, the key to the life cycle of L. pneumophila and P.
salmonis, is also involved in their pathogenesis. In both cases, a
key part of the pathogenesis process are the genes and gene
complexes that they use to secrete morphological structures (e.g.,
pili) or reactive proteins. Several proteins produced by L.
pneumophila allow it to evade the cellular immune response
and replicate inside macrophages. Some of these proteins are the
virulence factor BipA/TypA and the heat shock protein ClpB,
both of which have been extensively characterized (118). Isla
et al. (63) showed a significant increase in the expression of ClpB
and BipA proteins during infection of SHK-1 cells by P. salmonis,
whereby these virulence factors would be used by the bacterium
to evade cell degradation mechanisms and promote its
replication inside macrophages.

Inside the cells, P. salmonis alternates between a replicative and
a stationary phase in which a strict response is activated (78, 83,
84). P. salmonis induces an interruption of translation during its
intracellular replication, and the Dot/Icm secretion system type
IVB plays an important role during this process (83); however,
there are still many unexplored genes that are active during
intracellular infection of the bacterium. Global proteomic
profiling to identify differentially expressed proteins in
macrophage-like cells of Atlantic salmon challenged with P.
salmonis at different stages of infection has been described (78,
84). These results confirm previous findings at the transcriptomic
level, and they are valuable to understand the biological pathways
of P. salmonis infection in vitro at the protein level, but the need to
obtain this knowledge from experimental and naturally infected
fish in vivo remains. A model for the infective process of P.
salmonis based on a vacuolization stage and a propagation stage
can be proposed from the transcriptomic and proteomic results
(10, 12, 13, 30, 78, 83, 84, 93, 95–97) (Figure 2).

The stringent response is one such adaptive mechanism
through which P. salmonis can survive under nutrient
starvation and other related stresses (119). It has been
suggested that amino acid and fatty acid starvation triggers
RelA and SpoT to produce the alarmones guanosine tetra- and
pentaphosphate ((p)ppGpp) in different bacteria (120). Zúñiga
et al. (84) described the upregulation of these key genes during
the P. salmonis stationary phase and intracellular growth,
including genes encoding the two-component sensor kinase
LetS, the stationary phase sigma factor RpoS, and the (p)
ppGpp synthetase and/or hydrolase RelA and SpoT, which
have all been shown to play an important role in regulating
virulence in L. pneumophila and C. burnetii (121). During the
late stages of infection, the LCV becomes disrupted, leading to
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FIGURE 2 | Schematic summary of the pathways used by P. salmonis to enter to the cell and the immune responses modulated. This information was consolidated
with results descrbed in different in vitro and in vivo transcriptomic and proteomic studies. Phagocytosis, key in the life cycle of P. salmonis, is also its primary mode
of pathogenesis. The interaction of P. salmonis with host cells has been described by different transcriptomic and proteomic studies in vitro and in vivo (10–13, 29,
30, 78, 89, 93–107). P. salmonis infection consists of an early or vacuolization stage and a late or spreading stage. (1) Several studies have reported that the main
route of entry of the bacterium into the fish is through the gills and skin and, to a much lesser extent, the oral route. (2) P. salmonis is internalized by clathrin-
dependent endocytosis into phagocytic cells. Pilus proteins, beta-hemolysin, and the T6SS are a characteristic finding of the vacuolization stage. The transport of
carbohydrates, amino acids, peptides, iron, and other nutrients is increased inside the PCVs. (3) Once inside, a major reorganization of the cytoskeleton occurs by
altering actin filaments, tubulins, myosins, and septins, and P. salmonis simultaneously promotes an inactive GTPase state. P. salmonis induces a significant inhibition
of the antioxidant response that would promote the generation of an oxidative niche. Overall, P. salmonis alters cytoskeletal remodeling, intracellular transport,
organelle organization, vesicle and endosome trafficking and early endosomal components. The antigen recognition (LPS, flagellin, etc.) is conducted by macrophage
and dendritic cell (DC) PRRs, such as TLR5, DC-SIGN or CD209, C-type lectin (CD299, Mincle), and NLR. DCs play an important role in the response to P. salmonis
by modulating NF-kB activation, pathogen recognition, phagocytosis and the production of cytokines and chemokines led by the IFN-mediated response that
promotes Th1 polarization of T cells. At the same time, to enhance its survival in infected cells, P. salmonis upregulates IL-10 but downregulates IL-12, which
promotes Th1 polarization. P. salmonis induces flagellin-dependent activation of TLR5, resulting in TNFa, IL-1b and IL-8 production. P. salmonis promotes the
expression of antimicrobial peptides, such as hepcidin and cathelicidin, and acute-phase components such as haptoglobin, hemoglobin, collectrins, mannose-bound
protein C, complement components (C3, C6, C9) and CD163. All these findings confirm that P. salmonis creates a specific environment that promotes their survival
and replication in macrophages. During the propagation stage, the size and number of P. salmonis cells and vesicles increase, and nutrient availability is restricted,
initiating a stringent response. Biosynthetic processes are increased in both P. salmonis and host cells, as are iron acquisition, iron transporter proteins and acute-
phase responses. Expression of Dot/Icm T4SS genes, toxins, effector proteins, mobilome, transposons, and phage-related proteins is increased, probably in
preparation for exiting the cell. Many virulence factors upregulated in both infection stages correspond to plasmid-encoded proteins, which supports the hypothesis
of the importance of P. salmonis plasmids in the infective process. P. salmonis modulates the immune response to intracellular pathogens by promoting cell cycle
proliferation and suppressing apoptosis and by altering vesicle trafficking and paracellular permeability. P. salmonis alters peroxisome activity as part of its infection
strategy, thereby inducing an altered cellular redox balance, inflammation, and immune response. Moreover, P. salmonis reduces the rate of protein degradation by
the ubiquitin proteasome system related to the response to cellular and endoplasmic reticulum stress-associated unfolded proteins as a mechanism to increase its
survival within host cells. (4) Processing and presentation of antigens. T cells recognize only antigen fragments that are bound to MHC-I or MHC-II on APCs.
Antigens presented by MHC-I are processed through the proteasome and transferred to the endoplasmic reticulum by a transporter associated with antigen
processing (TAP) where they associate with MHC-I and are finally transported to the cell membrane. MHC-II-presenting antigens are incorporated into cells by
endocytosis, digested in lysosomes and loaded onto MHC-II molecules prior to migration to the cell surface. However, P. salmonis inhibits the MHC-I pathway
(mhc1, cd8, tcra, tcrb gene underexpression) but activates the MHC-II pathway (mhc2, cd4), so its strategy is to evade the CD8+ T cell-mediated immune response.
P. salmonis increases the expression of important co-stimulatory molecules on the macrophage surfaces (cd80/86, cd83) and reduces the expression of zbtb46, a
transcriptional factor that inhibits APCs maturation (5) T cell activation and differentiation. CD4+ T helper cells can differentiate into Th1, Th2, Th17 and Treg
populations, which play different roles in the immune response. IL-12 promotes the differentiation of CD4 cells into Th1 cells to eliminate intracellular pathogens, while
IL-2, IL-4, IL-13A, and IL-10 promote the differentiation of Th2 cells in response to bacteria and extracellular parasites. However, P. salmonis promotes IFN-g
production but reduces IL-12 production, reduces the expression of Th1 polarization-specific transcription factors (tbet, eomes) and, while promoting granzyme A
expression (gzma), reduces perforin (mpeg1) production. In addition, P. salmonis increases the expression of Treg polarization-specific transcription factor (foxp3)
suggesting the activation of an immune tolerance response.
Frontiers in Immunology | www.frontiersin.org March 2022 | Volume 13 | Article 8568969

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rozas-Serri Immunity Against Piscirickettsia Salmon
bacterial egress into the cytosol. Upon nutrient depletion, RelA
and SpoT are triggered, leading to increased levels of ppGpp,
which triggers phenotypic transition into stationary phase (122).
PISCIRICKETTSIA SALMONIS EVADES
THE CELL-MEDIATED ADAPTIVE IMMUNE
RESPONSE: IS IT CHECKMATE?

Microbial infections are characterized by a constant interplay
between pathogens and hosts, with pathogens exploiting various
host functions during infection and hosts reacting with
appropriate defense responses. Therefore, understanding host–
pathogen interactions is crucial for the development of effective
vaccines and therapies. Antigen-presenting cells (APCs) such as
macrophages and dendritic cells (DC) sense bacteria through
pathogen recognition receptors (PRRs) activated by pathogen-
associated molecular patterns (PAMPs). Among the main PRRs
and PAMPs are Toll-like receptors (TLRs) and flagellin,
respectively (Figure 2). P. salmonis has a complete and
organized set of flagellar genes, although no structural flagellum
has ever been reported for this bacterium (123). Flagellin binding
to TLR5 activates the MyD88-dependent pathway, leading to the
activation of IRAK-1/4 and TRAF-6 and resulting in the activation
of NF-kB, which induces the expression of proinflammatory
cytokines (124). Enrichment analyses of the differentially
expressed genes revealed several central signatures following
infection, including positive regulation of TLR5 signaling, which
converged at the NF-kB level to modulate the proinflammatory
cytokine response (12). Flagellin from different bacteria induces
the upregulation of cathelicidin (camp) in vitro, and TLR5 is
involved in the signaling pathway (125). Rozas-Serri et al. (12)
observed upregulation of tlr5 and camp in fish infected with P.
salmonis. Lately, Muñoz-Flores et al. (126) showed that MyD88 is
an essential adaptor protein in the activation of the P. salmonis
flagellin-mediated TLR5M/TLR5S signaling pathway during in
vitro infection. Several in vitro and in vivo assays have suggested a
possible use for flagellin as an immunostimulant or vaccine
adjuvant (127). The flagellar protein FlgG of P. salmonis
achieved the highest level of protection, with a relative percent
survival (RPS) of 95% (21). Recently, González-Stegmaier et al.
(128) demonstrated that the full recombinant flagellin B from
Vibrio anguillarum (rFLA) and its recombinant D1 domain
(rND1) induced the expression of genes involved in an
inflammatory response quickly and for a short time and that
these effects can occur when the molecules are used alone or in
combination with a commercial vaccine against P. salmonis.

P. salmonis induces significant cytoskeletal reorganization but
decreases lysosomal protease activity and causes the degradation
of proteins associated with cellular stress (12, 95) (Figure 2).
Infection with P. salmonis also delays protein transport, antigen
processing, vesicle trafficking and autophagy but promotes cell
survival and proliferation and inhibits apoptosis (12). As P.
salmonis has been shown to undergo both replication and
degradation within rainbow trout head kidney macrophages,
Frontiers in Immunology | www.frontiersin.org 10
bacterial antigens could potentially be presented by the MHC-II
system (39). Alternatively, as the bacterium has been shown to
inhibit the fusion of phagosomes and lysosomes, P. salmonis
could remain within phagosomes for replication followed by
subsequent release or escape (74).

It has been reported that IFN would promote increased
expression of APC-related markers (MHC-I and MHC-II) and
down-regulation of ZBTB46 in rainbow trout, which is a
transcriptional factor that inhibits APC maturation (129, 130).
Recently, IFN-g has been shown to promote the expression of cell
surface markers (CD80/86, CD83 and MHC-II) and decrease the
expression of zbtb46 in mononuclear splenocyte subpopulations
of Atlantic salmon (98). Taken together, these results would
confirm that IFN-g promoted by P. salmonis modulates the
interaction between APCs and T cell polarization, and that an
optimal antigen presentation process is essential for the activation
of a protective CMI response. Nevertheless, it is necessary to
complement these findings with the expression of the counterpart
molecular components of these markers on T cells, such as CD28
and CTLA4. Furthermore, an up-regulation of the transcription
factor foxp3 has been described in rainbow trout splenocytes co-
cultured with both IFN-stimulated cells and cells stimulated with
P. salmonis proteins (94), demonstrating an intercommunication
between APCs and lymphocytes that would promote a
polarization towards a Treg phenotype. However, different
transcriptomics results have shown that P. salmonis effectively
modulates the upregulation of MHC-II and CD4 T cells and
antibody responses, but these indicators are not correlated with
the protection of vaccines or better survival rates in field
conditions. Moreover, P. salmonis induces a downregulation of
the CMI response led by cytotoxic CD8 T cells.

Transcriptome analysis has revealed a global translation
shutdown during intracellular growth of P. salmonis, and it has
been proposed that intracellular P. salmonis alternates between a
replicative phase and a stationary phase during which a stringent
response is activated (83). In vitro and in vivo functional genomic
studies of P. salmonis infection in salmon have focused on changes
in coding gene expression (10, 12, 13, 30, 83, 97–99), small/
microcoding RNA expression (100), and long noncoding RNA
expression (96) (Table 4). In addition, Leiva et al. (89) showed a
significant DNA methylation alteration in P. salmonis-infected
Coho salmon with a temporal pattern during infection. The
number of differentially methylated regions and the associated
metabolic pathways would support the hypothesis that epigenetic
changes in the genome of infected Coho salmon could be
modulated by P. salmonis. Trout skeletal muscle is an
immunologically active organ that can implement an early
immune response against P. salmonis (101). In fact, this response
could be differentially regulated by cortisol, which could lead to
bacterial outbreaks in muscle under stress conditions (102, 103). A
common transcriptional response associated with clathrin-mediated
endocytosis and iron homeostasis has been shown in different
tissues (12, 96, 97, 104, 105). Dual global transcriptomic analysis
revealed a bacterial dependency on host metabolism and nutrient
accessibility (30). Interestingly, genome-wide comparisons of P.
salmonis revealed the absence of the biosynthetic pathway for
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TABLE 4 | In vivo transcriptomic studies describing innate and adaptive immune responses in Atlantic salmon and Coho salmon infected with P. salmonis.

Challenge model Specie Size Isolate/
doses

Taget
tissue

Expression Analysis Reference Main discovery

I.P challenge: water
temperature and salinity not
reported, but it is assumed
that it is freshwater because
the authors speak about
Atlantic salmon “parr”

Atlantic
salmon
parr

Not
reported

Vancouver
Island,
British
Columbia,
Canada

Headkidney Coding
RNAs

Microarrays Rise et al.,
(10)

Downregulation of at least 10
genes involved in response to
oxidative stress
Upregulation of complement
component
Altered iron ion homeostasis
Inflammatory and acute phase
responses
Downregulation of T cell receptor
Upregulation of C-type lectin and
matrix metallo- proteinase

I.P challenge, SW 27.6 ppt,
10,1°C

Atlantic
salmon
postsmolt

237 g;
<2% CV

P.
salmonis
(PS14LT8)
1 x 10e4
PFU/ml

Liver,
headkidney

Coding
RNAs

Microarrays Tacchi
et al., (13)

Upregulation of IFN response
Downregulation of chemokines,
chemokine receptors, and an
inhibitor of NF-kB
Downregulation TCR-a, TCR-b,
T-cell activation Rho GTPase-
activating protein, and CD80
Upregulation of stress-associated
genes
Downregulation of genes involved
in apoptosis
Upregulation of genes involved in
both protein synthesis and
protein degradation
Upregulation of genes involved in
energy metabolism
Downregulation of genes involved
in gluconeogenesis
Downregulation of genes involved
in cell signaling mediated by G
proteins

I.P challenge; water
temperature and salinity not
reported

Atlantic
salmon

42 g; SD
11 g

P.
salmonis
LF-89; 0.2
x 10e4.8
TCID 50%/
ml

Headkidney
and skeletal
muscle

Coding
RNAs

RNA-seq Dettleff
et al., (105)

Resistant hosts triggered up-
regulation of LysC, which may
explain a decrease in the bacterial
load in head kidney

I.P challenge, 33.92 +- 0.04
ppt; 14.1 +- 0.1°C

Atlantic
salmon
postsmolt

276.9 +-
78,3 g

P.
salmonis
LF-89; 1 x
10e4 PFU/
ml

Headkidney Coding
RNAs

Microarrays Pulgar
et al., (97)

Upregulation of lysozyme C II
Upregulation of component of the
major histocompatibility complex
(MHC) class I
Upregulation of components
linked to the organization and
regulation of the actin
cytoskeleton, such as
cytoplasmic actin, thymosin and
tropomyosin
Downregulation of genes involved
in protein synthesis, transport of
oxygen and selenium, and
homeostasis of metals
Downregulation of genes involved
in intracellular non-hemic iron
binding and in hemic binding
suggest changes in iron
metabolism

I.P challenge; type of water
and water temperature no
informated

Atlantic
salmon

158.3 +-
35,4 g

P.
salmonis
LF-89; 1 x
10e4 PFU/
ml

Headkidney,
spleen, brain

Coding
RNA; Long
non-coding
RNA

RNA-seq Valenzuela-
Miranda
and
Gallardo-

Clathrin-mediated endocytosis
and iron homeostasis
Endocytic receptors were mainly
downregulated

(Continued)
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TABLE 4 | Continued

Challenge model Specie Size Isolate/
doses

Taget
tissue

Expression Analysis Reference Main discovery

Escárate
(101)

Strong correlation between the
modulations of long non-coding
RNAs and genes associated with
endocytosis and iron
homeostasis

I.P challenge; type of water
and water temperature no
informated

Atlantic
salmon

158.3 +-
35,4 g

P.
salmonis
LF-89; 1 x
10e4 PFU/
ml

Headkidney,
spleen

Small non-
coding RNA

RNA-seq Valenzuela-
Miranda
et al., (100)

Upregulation of genes involved in
the immune response, such as
cortisol metabolism, chemokine-
mediated signaling pathway and
neutrophil chemotaxis genes
miRNA expression in co-
modulation with transcription
activity of target genes is related
to putative roles of non-coding
RNAs in the immune response

I.P challenge; type of water
and water temperature no
informated

Atlantic
salmon

154.7 +-
13,5 g

P.
salmonis
EM-90; 1 x
10e4 PFU/
ml

Headkidney,
spleen

Coding
RNAs

Dual RNA-seq Valenzuela-
Miranda
et al., (30)

Both bacteria and host displayed
a large number of genes
associated with metabolism and
particularly related with the amino
acid metabolism
P. salmonis lack of the
biosynthetic pathway for several
amino acids such as valine,
leucine, and isoleucine
This condition is phenotypically
reversed when the amino acids
are supplemented in the bacterial
growth medium
There would be a metabolic
dependence of P. salmonis on
salmon amino acids

Cohabitation challenge, SW 15
PPT, 12°C; cohabitants fish

Atlantic
salmon
postsmolt

118.4 g P.
salmonis
LF-89; 1 x
10e5.6
PFU/ml

Headkidney Coding
RNAs

RT-QPCR Rozas-
Serri et al.,
(11)

Induction of the inflammatory and
IFN-mediated response,
modulation of Th1 polarization
and reduced antigen processing
and presentation
Modulation of the evasion of the
immune response mediated by
CD8+ T cells and promotion of
the CD4+ T-cell response during
the late stage of infection

P.
salmonis
EM-90; 1 x
10e5.6
PFU/ml

This response was significantly
exacerbated in fish infected by
EM-90 isolate, a finding that is
probably associated with the
higher pathogenicity of EM-90
P. salmonis is able to manipulate
the kinetics of cytokine
production to promotes its
intracellular survival and
replication

Cohabitation challenge, SW 15
PPT, 12°C; cohabitants &
shedders fish

Atlantic
salmon
postsmolt

118.4 g P.
salmonis
LF-89; 1 x
10e5.6
PFU/ml

Headkidney Coding
RNAs

RNA-seq Rozas-
Serri et al.,
(12)

Upregulation of DC-SIGN and
TLR5 signaling, which converged
at the NF-kB level to modulate
the proinflammatory cytokine
response
P. salmonis induced an IFN-
inducible response (IRF-1 and
GBP-1) but inhibited the humoral
and cell-mediated immune
responses
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TABLE 4 | Continued

Challenge model Specie Size Isolate/
doses

Taget
tissue

Expression Analysis Reference Main discovery

P. salmonis induced significant
cytoskeletal reorganization, but
decreased lysosomal protease
activity and caused the
degradation of proteins
Delayed protein transport, antigen
processing, vesicle trafficking and
autophagy

P.
salmonis
EM-90; 1 x
10e5.6
PFU/ml

Both P. salmonis isolates
promoted cell survival and
proliferation and inhibited
apoptosis
Both P. salmonis isolates used
similar pathways to modulate the
immune response in shedders
fish at 5 dpi, but the profiles in
cohabitants fish were different at
35 dpi
Regardless of the isolate of P.
salmonis, both maintained the
viability of host cells and increase
intracellular replication and
persistence at the infection site

Cohabitation challenge, SW 15
PPT, 12°C; cohabitants,
shedders and vaccinated fish

Atlantic
salmon
postsmolt

118.4 g P.
salmonis
LF-89; 1 x
10e5.6
PFU/ml

Headkidney Coding
RNAs

RT-QPCR Rozas-
Serri et al.,
(30)

Fish infected with LF-89 isolate
showed an anti-inflammatory
response, but this finding was not
observed in the EM-90-infected
fish and vaccinated fish
Fish infected with both P.
salmonis isolates showed mhc1-
mhc2, cd4-cd8b and igm
overexpression

P.
salmonis
EM-90; 1 x
10e5.6
PFU/ml

P. salmonis induces IL-10
overexpression and reduces IL-
12 expression which could be a
strategy to promote intracellular
survival and replication
Vaccinated-fish exhibited mhc1,
mhc2 and cd4 overexpression
but downregulation of cd8b and
igm

Inactivated
whole-cell
vaccine
5.7 × 10e5
– 2.5 ×
10e6

It is not the same to evaluate the
immune response in fish
challenged intraperitoneally as by
cohabitation

I.P challenge, SW 25 PPT
15°C

Atlantic
salmon

40 +- 10
g

P.
salmonis
LF-89; 1 x
10e4 PFU/
ml

Headkidney Coding
RNAs

RT-QPCR Pontigo
et al., (131)

Six mRNA variants of NLRC3 in
Atlantic salmon (SsNLRC3) and 2
isoforms were found
Analysis of six variants involved in
the conformation of two different
isoforms. Probable function of
each isoform in pathogen
recognition.

I.P challenge, SW 32 PPT;
15°C

Coho
salmon

150 g P.
salmonis
LF-89;
Doses not
reported

Headkidney DNA
methylation

DNA sequencing Leiva et al.,
(89)

Genome-wide methylation results
disclose significant methylation
alterations in coho salmon
infected with P. salmonis
Epigenetic changes observed in
the coho salmon genome could

(Continued)
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valine, leucine, and isoleucine. When these amino acids are
restricted, bacterial growth dynamics are significantly impaired,
but this condition is reversed when amino acids are
supplemented again. All these transcriptomic analyses have
provided evidence of host biological processes, cellular
components, and molecular functions during P. salmonis
infection to evade the immune response, induce significant
cytoskeletal reorganization, and promote intracellular survival and
replication. Nucleotide-binding oligomerization domain-like
receptors, or NOD-like receptors (NLRs), are intracellular
receptors responsible for recognizing pathogens. Pontigo et al.
(106) described two different isoforms of SsNLRC3 in P.
salmonis-infected Atlantic salmon, whereby the isoform might
have a different function in the recognition of bacterial ligands
during infection. However, these results suggest that, similar to L.
pneumophila (131), P. salmonis promotes pyroptosis, a type of
programmed cell death associated with intracellular pathogen
infection characterized by inflammasome formation, caspase-1
activation and proinflammatory cytokine production.

In salmonids, the adaptive immune system consists of CMI,
whose mechanism of action is to “kill” and eliminate pathogen-
infected cells, and humoral immunity, which relies on antibodies to
neutralize pathogens in fluids and tissues. As P. salmonis is a
bacterium that replicates within host cells, it is inaccessible to
Frontiers in Immunology | www.frontiersin.org 14
neutralizing antibodies in the extracellular matrix, so cell-
mediated immunity plays a key role. All T cells possess a T cell
receptor (TCR) by which they recognize peptides presented by
MHC, alongwith CD3 and costimulatory (CD28) and coinhibitory
(CTLA-4) surfacemolecules (133).T cell-associated genes and their
encoded proteins with T cell activity in fish have been well
documented (134). The presence of cytotoxic T cells (CTLs) and
Th cells in fish have been identified as CD8+ and CD4+ T cells,
respectively (135, 136). In the case of CMI against P. salmonis, CD8
T cells should recognize infected cells by binding to MHC-I
molecules expressing peptides processed from intracellular
pathogens. MHC-I ligands bind to their respective TCRs on the
surface of CD8+ T cells (137). In addition, CD28 costimulatory or
CTLA-4 negative regulatory markers must mediate the interaction
between CD8+ cells and MHC molecules (138). Upon binding to
MHC-I molecules, naïve CD8 cells are activated into effector CTLs
that secrete cytotoxic granules containing perforins and granzymes.
Perforins form spores in target cell membranes, enabling
granzymes, which are serine protease enzymes, to enter the target
cells and cleave to host proteins to induce apoptosis. To execute
their effector functions, CD8+ T cells are helped by CD4+ T cells.

The differentiation of naïve CD4+ T cells into Th1 cells is
mediated by IL-12 and IFN-g (139), which play crucial roles in
theparacrine andautocrinemodulationofAPCs in the activationof
TABLE 4 | Continued

Challenge model Specie Size Isolate/
doses

Taget
tissue

Expression Analysis Reference Main discovery

be possibly impelled by the
bacterial pathogen

I.P challenge, SW 32 PPT;
15°C

Coho
salmon

150 g P.
salmonis
LF-89;
Doses not
reported

Plasma-
Extracellular
vesicles

Small non-
coding RNA

RNA-seq Leiva et al.,
(132)

Extracellular vesicles-miRNAs
target genes showed that they
were grouped mainly in cellular,
stress, inflammation and immune
responses
P. salmonis could benefit from
unbalanced modulation response
of coho salmon EV-miRNAs to
promote a hyper-inflammatory
and compromised immune
response

I.P challenge, FW, 15.2°C Atlantic
salmon
parr

64.2 +-
10.4 g

P.
salmonis
EM-90;
10e0.83
TCID50/
mL

Headkidney Coding
RNAs

Microarrays RT-
QPCR

Xue et al.,
(99)

Multivariate analyses of infected
fish at 21 days-post infection
revealed two phenotypes (lower
and higher P. salmonis load)
19 transcripts showed a
significant positive correlation with
the P. salmonis load: iron
metabolism (hampa, frrs1a),
inflammatory response (il8a,
saa5),
antibacterial response (campb,
c3a) and leukocyte function (ifng,
bcl10a).
6 transcripts showed a
significantly negative correlation
with the P. salmonis load:
oxidative stress response (esn1a,
selenopb).
March 2
wpc, weeks post-challenge (for cohabitation); wpi, weeks post-infection; dpi, days post-infection; I.p., intraperitoneal; I.m., intramuscular; FW, freshwater; SW, seawater.
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CD8+ T cells against intracellular pathogens. Therefore, a better
understanding of cytokine signaling that promotes CD4+ to CD8+
T-cell differentiation, as well as co-stimulatory signals between
APCs and T- c e l l s , i s n e ed ed to unde r s t and the
immunomodulators capable of activating a protective CMI
response against P. salmonis. Antibody responses are normally
observed in fish vaccinated against SRS under field conditions, but
these humoral immune responses show no correlation with
mortality rates and therefore fail to confer protection throughout
the production cycle (1, 26, 27). However, although antibodies
could reactwithP. salmonis before enteringhost cells or during cell-
to-cell transmission, the real challenge is to develop protective
vaccines based on CMI. Rozas-Serri et al. (11, 12) demonstrated
that P. salmonis induces an IFN-inducible response (IRF-1, GBP-1,
IFN), but CD4 overexpression and CD8b underexpression were
observed, suggesting thatP. salmonismodulatesCD8+Tcell-driven
evasion of CMI and promotes the CD4+ T cell response during the
late phase of infection as a mechanism to escape host defenses
(Figure 2). This mechanism could explain the high bacterial loads,
severe pathological lesions, high cumulative mortality, and low
survival inP. salmonis-infected fish (8). In general, themechanisms
used by intracellular bacteria to trigger CD8+ cell activation have
not been fully elucidated in fish, as demonstrated in viral
infections (140).

Viruseswith economic importance in salmon farming, e.g., ISAV,
IPNV, and SAV, are relatively well controlled by vaccines, including
conventional vaccines such as virins; these viruses are integrated into
a more global strategy that considers the genetic management of
resistance, control of production conditions, epidemiological
surveillance, and specific regulations for control. ISAV activates a
rapidand long-lasting inductionofMHC-Ipathwaygenes inAtlantic
salmon kidney cells, an effect mediated by virally induced type I IFN
(141). These observations suggest that salmon type I IFN has
important immunomodulatory functions in activating the MHC-I
machinery in response to ISAV infection and that, unlike influenza
andmany other viruses, ISAV does not seem to interfere withMHC
and IFN expression. This could support the thesis that salmon can
mount an efficient CMI response, since the viruses are phagocytized,
incorporated into antigen-presenting cells, and processed in the
cytoplasm of vacuoles and their immunogenic structures are
submitted by MHC-I to T cells to finally differentiate into CD8+ T
cells. So, what happens to P. salmonis if it also replicates within
vacuoles in the cell’s cytoplasm? When the bacterium is alive and
infects fish, it is plausible that the bacterium’s virulence factors
support its strategy to escape antigen processing and/or that MHC-
I does not present the antigens efficiently, and the bacterium finally
succeeds in evading the fish’s response mechanisms. The next
question would then be whether this is the reason why fish are also
unable to activate a response against a bacterin-like vaccine or even a
liveattenuatedvaccine.Hence, elucidatingwhichP. salmonisproteins
are involved in altering the processing and/or presentation of its
antigens in host cells and how they act could provide information to
confirm the hypothesis that the bacterium is able to alter this cellular
mechanism to evade CMI.

This could presumably be because of the selective pressure
exerted by the immune system, many viruses have evolved
Frontiers in Immunology | www.frontiersin.org 15
proteins that interfere with antigen presentation by MHC-I
molecules (142). Viral proteins have been characterized to exploit
bottlenecks in theMHC-I pathway, suchas peptide translocationby
transporters associated with antigen processing (143).
Alternatively, viral proteins can cause the degradation or
mislocalization of MHC-I molecules. This is often achieved by the
subversionof the host cell’s ownprotein degradationand trafficking
pathways. Antigen processing andpresentation byMHCmolecules
is a cornerstone in vertebrate immunity. Six different MHC-I
lineages have been described in teleosts: U, Z, S, L, P, and H (144,
145). Although structurally similar to classical MHC-I molecules,
all belong to the U lineage (Sasa-uba), and many nonclassical/
MHC-I-like molecules (L lineage genes Sasa-lda, Sasa-lia, Sasa-lca,
Sasa-lfa, Sasa-lga, and Sasa-lha) have functions other than peptide
presentation, ranging fromhost homeostasis to immune regulation
(146). Using two separate in vivo challenge models in Atlantic
salmon with different kinetics and immune pathologies combined
with in vitro stimulation using viral and bacterial TLR ligands,
Svenning et al. (147) showed that de novo synthesis of different L
lineage genes is distinctly regulated in response to different types of
immune challenges. In this way, while salmonid alpha virus 3
(SAV3) strongly induced the expression of lia, lga and, to a lesser
extent, lha, but not lda, lca or lfa, infection by P. salmonis resulted
predominantly in positive regulation from lga. The induction of lca,
which is predominantly expressed in primary and secondary
lymphoid tissues, was marginal except for a transient
upregulation in the pancreas following SAV3 challenge.
VACCINATION AGAINST P. SALMONIS:
MISSION POSSIBLE?

Biosecurity, vaccination, and selective breeding for disease resistance
are the main tools for controlling infectious diseases in aquaculture.
However, host genetics and vaccines provide only partial protection,
raising concerns about their effectiveness in the field. Pathogens can
be divided into extracellular, facultative intracellular, and obligate
intracellular pathogens. Intracellular pathogens pose special
challenges to the immune system because regardless of whether
they are exposed extracellularly, they cannot be contacted directly by
immune cells or by humoral factors such as antibodies. The aim of
vaccination is to train theadaptive immunesystemoffishbyexposure
to pathogenic antigens so that upon subsequent exposure, the
immune system mounts a rapid and long-term protective response
against the same pathogen. The success of vaccination against
bacterial diseases in fish is mainly attributed to vaccines targeting
extracellular pathogens, as they activate antibody-mediated humoral
adaptive immunity (148). However, circulating antibodies do not
protect againstP. salmonis infection or disease development, because
P. salmonis is a facultative intracellular bacterium. Stimulation of the
antigen presentation and processing process of P. salmonis is
therefore the initial target of vaccines, which then aim to modulate
immunological memory; but it is precisely these processes that
constitute one of the current limitations in fish. Although IFN-g
has been reported to promote the expression ofAPC surfacemarkers
that are key in co-stimulating the signal for T-cell activation and Th1
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polarization, it would also promote polarization towards Treg (94),
indicating an immune tolerance profile that needs further
investigation because it could be the cause of inhibition of the
inflammatory response to promote an anti-inflammatory response
that determines persistent infection and chronic disease course in
fish. It is not known whether an increased inflammatory response
driven by highly destructive proinflammatory macrophages,
although they are an important part of Th1 polarization, could
drive a CMI capable of controlling P. salmonis evasion
mechanisms. On contrary, exacerbated activation of the IFN-g-
mediated inflammatory response (11, 12) appears to increase the
susceptibility of infected fish, culminating in progression of the
response from an acute to a chronic stage and resulting in
increased intracellular replication of P. salmonis, high bacterial
loads, serious pathological lesions and low survival (8). In addition,
Iliev et al. (149) showed that the potent immunostimulatory
properties of a TLR ligand would not necessarily translate into
enhanced APC functions and highlight the complexity of the
activation of fish immune cells by TLR ligands.

That said, there is a need to modulate and activate the CMI
response, but available vaccines do not trigger effective antigen
presentation through MHC-I, and there is a lack of adequate
activation and expansion of T cells, especially CD8+ cytotoxic T
cells (29, 38). The efficacy of vaccines reported from experimental
challenges has always been acceptable (1, 25), but current
vaccination strategies under field conditions, whether based on
replicating or nonreplicating vaccines, have shown only a transient
activation of the humoral immune response and specifically of the
CMI response, which are not strong or long-lasting enough to
achieve effective control of SRS (1, 26, 27, 29, 38). Based on current
understanding of the limitations of vaccines for SRS control and
the intracellular nature of P. salmonis, other vaccines may be
advantageous. A new immunoinformatics-based strategy to design
vaccines using epitopes of antigenic proteins from bacteria and
viruses that directly promote T- and B-cell activation and
differentiation has been used in humans. Although it is not yet a
popular strategy in fish, the design and development of multi-
epitope vaccines against Flavobacterium columnare (150), E. tarda
y F. columnare (151), Streptococcus agalactiae (152), and E. ictaluri
(153) have been reported. This in silico strategy was used by a
consortium of Chilean entities to design a multi-epitope chimeric
vaccine targeting different epitopes of P. salmonis.

The variable and relative protection of current vaccines against
SRS under field conditions could be a consequence of different
environmental variables (1), the choice of the vaccination strategy
(26, 27, 137), coinfection with other pathogens such as sea lice
(154) or the variation in genetic resistance to SRS among families
(155). In this way, different factors related to fish production can
lead to increased susceptibility, coinfection, and mortality. Everson
et al. (156) showed the importance of environmental factors, host
genetics, and vaccination in relation to infection and mortality
related to infectious diseases. However, the main reason would be
related to insufficient and/or transient activation of the CMI
response induced by conventional vaccines (1, 10–13, 25, 29, 38,
97, 105). Thus, translating recent knowledge about fish-P.
salmonis interactions, specifically about the immune response
Frontiers in Immunology | www.frontiersin.org 16
and its pathogenesis, into better vaccines or better vaccination
strategies is not an easy task and remains one of the main
challenges in fish vaccinology.

The kinetics of the antibody response are transient after
freshwater vaccination, and antibody levels begin to decline
approximately 1800 days postvaccination (22). However, the
mechanisms that could explain this fact are the natural challenge
and exposure of fish to P. salmonis and, consequently, the
consumption of antibodies, as has been observed in salmon
vaccinated with IPN (140). These results supported the idea of
complementing the classical parenteral vaccination strategy with
the application of a vaccine booster administered orally before the
fall of the antibody titer (22).However, thefield results obtained from
several generations of farmed salmon were not as expected, and this
strategy did not contribute significantly to disease control (1, 25, 29,
38).The intraperitoneal route isusually chosen for theadministration
of vaccines in salmon, but there is little knowledge about its immune
response. Recently, a significant increase in leukocytes, total IgM
antibody-secreting cells (ASCs) and P. salmonis-specific ASCs in the
peritoneal cavity at 3 and 6weeks after infectionwith P. salmonis has
been described (157). Hence, the authors suggest a putative role for
adipose tissue in the peritoneal cavity immune response.

The microbiome plays an important role in the maturation of
the vertebrate adaptive immune system and stimulation of the
immune response and can directly enhance the host pathogen
defense via colonization resistance and the production of inhibitory
compounds (158). Complementarily, the mucosal immune
response based on IgT+ B cells and secreted IgT plays a key role,
as IgT ishighly inducedbypathogens onmucosal surfaces andcoats
much of the fish microbiota (34, 159, 160). However, there is an
important gap regarding how to complement systemic immunity
against P. salmonis with advances in the knowledge of activating
local immunity at the site(s) of P. salmonis entry, such as the gills
and skin, as well as the gut, which could help limit the success
of infection.

Complementarily, selective breeding for improved resistance to
infectious diseases is a potentially a more sustainable strategy for
the long-term control of disease outbreaks in aquaculture (161),
especially when vaccination strategies have not been as effective as
expected. Previous studies have demonstrated significant genetic
variation for resistance to P. salmonis in Atlantic salmon (h2 = 0.11
to 0.41), rainbow trout (h2 = 0.45 to 0.62) and Coho salmon (h2 =
0.16) using disease challenge data (162–167). There is an
important genetic component of SRS resistance in Atlantic
salmon supported by a polygenic architecture. When comparing
the response between fish with high and low resistance to P.
salmonis, changes in the expression of genes related to the
cytoskeleton, apoptosis and cell survival, bacterial invasion/
intracellular trafficking and the inflammasome are observed,
which correlate with genetic resistance (168). Thus, the possible
mechanisms leading to genetic resistance are likely heterogeneous
and vary among different families and individuals.

One SNP related to B cell development was identified as a
potential functional candidate associated with resistance to P.
salmonis defined as days to death (162). B cells are critically
important in the humoral immune response, but they are also
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dedicated phagocytes, so the latter innate function could be
important in the immune response against P. salmonis in
Coho salmon. Early growth is positively correlated genetically
with resistance to P. salmonis, measured by the day to death and
by the harvest weight in Coho salmon, so selective breeding for
early growth could indirectly improve the harvest weight and
resistance to P. salmonis in the population (169).

According to Figueroa et al. (155), the between-familiar
variation is a strong intrinsic factor that determines the variable
protection of vaccines for SRS. In some full-sibling families, the
added protection by vaccination increased the survival time
compared to their unvaccinated siblings; in other families, there
was no added protection by vaccination. However, further studies
are needed to assess whether variations in the host immune
response to vaccination for SRS control could explain the
differences in resistance observed among vaccinated fish and what
biological mechanisms could explain it, because vaccination and
selective breeding have always been considered supplementary
strategies in disease control in aquaculture. In addition, although
cohabitation challenge models provide little information on
whether fish with higher genetic resistance and/or vaccinated fish
are less likely to transmit infection when infected, they are more
suitable models than intraperitoneal challenge models for
evaluating disease resistance and/or vaccine efficacy.

Mortality is the main phenotype for disease resistance in fish,
but there is emerging evidence that directly targeting survival by
breeding or vaccination without considering the epidemiological
effects does not reduce disease transmission or the disease
prevalence at the population level (170–172). Three key
epidemiological host traits affect the infectious disease
prevalence and population mortality rates are susceptibility,
infectivity, and endurance (170). Chase-Topping et al. (173)
reported that both vaccination and genetic selection reduce but
do not prevent ISA transmission. The authors suggest that it
would be very beneficial to assess the combined effects of genetic
selection and vaccination on ISA transmission and to evaluate the
mucus viral load as a potential in vivo indicator for individual’s
infectivity. These results should be applied to SRS transmission
experiments to understand the effects of vaccination strategies and
genetic resistance on SRS control under field conditions. Similarly,
since host genetics and vaccines provide only partial protection
and raise questions about their efficacy in the field, the control plan
for SRS must consider the epidemiological edge, as little is known
about the impact of genetic management and/or vaccines on the
transmission and prevalence of SRS. Based on this scenario, it
could be hypothesized that relative control of SRS is based on
regulatory and production changes designed and implemented by
industry due to an evolving public–private roadmap, which
includes vaccination strategies but also a low relative contribution.
CONCLUDING REMARKS AND
FUTURE AVENUES

Infectious diseases caused by intracellular bacteria in different
farmed fish species worldwide represent a great challenge,
especially for their control by vaccination and genetic resistance
Frontiers in Immunology | www.frontiersin.org 17
to disease. One of these diseases is SRS, which has been described in
several salmon-producing countries, but which especially affects
Chilean salmon farming. In practice, given the industry’s collective
imperative need toadvance in the control of SRS inorder to increase
its long-term sustainability and competitiveness, it seems a frivolity
to discuss whether P. salmonis is a pathogenic or environmental
bacterium (174, 175), since, in either case, reality shows us that: (1)
P. salmonis is a very complexbacterium thatweneed tomore about,
especially its interaction with host cells; (2) SRS is the main
infectious disease of Chilean salmon farming, generating
economic losses conservatively estimated at approximately 700
million dollars per year; and (3) an average of 93.28% of total
antibiotics used in the Chilean salmon industry in the last 5 years
has been only for the control of SRS. That said, it is undoubtedly
the main mission of all members of the salmon industry to
continue working together to fill the knowledge gaps that will
allowus to optimize the control of SRS; with a specific focus on the
interaction of the components of the epidemiological triad: the
pathogen, the fish and the aquatic environment (including
production management).

Significant knowledge has been generated in recent years on
different virulence factors of P. salmonis that could explain the
difficulties in its control under field conditions: (1) Sec-
dependent pathway and Type 4 Dot/Icm secretion system; (2)
expression of ClpB and BipA proteins; (3) siderophore
production; (4) genes for vibroferrin biosynthesis; (5)
pathogenicity islands; (6) membrane vesicles; (7) large cryptic
plasmids; (8) Sec dependent pathway; (9) type IV pili and
biofilms; and (10) expression of virulence-associated genes
during stringent response, among others. However, more
specific knowledge is still required regarding the mechanisms
of action of the virulence factors of P. salmonis that give it a high
capacity to evade the host response. New methods in genetics
and molecular biology have contributed to the in vitro study of
the basic biology of P. salmonis. Although not all genes of
pathogenic microorganisms play a role in their pathogenicity
or virulence, nor can they be confirmed only in a cell culture
invasion model. Methods such as subcellular fractionation and
single-molecule super-resolution microscopy should be applied
to tag molecules inside bacteria and host cells to follow their fate
during early and late infection, and even to find P. salmonis genes
or proteins that are activated only when they are inside cells.

Although effective control of infectious diseases in
aquaculture requires the integration of several management
measures and interventions, there is a consensus that the
availability of an effective vaccine(s) should be one of the most
important pillars to support control. However, although there is
evidence that efforts have been made in the development of
vaccines against SRS, unfortunately, the objective has not yet
been achieved, and the SRS control plan basically lacks an
effective vaccine. Existing evidence shows that the production
of CMI-based vaccines would be the most effective approach to
reduce the prevalence and severity of SRS outbreaks. Given that
this is one of the most virulent bacterial pathogens for salmon,
continued research on how P. salmonis evades fish adaptive
responses is necessary to lead to new insights that will improve
our understanding of host-pathogen interactions.
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Basically, the strategy for developing effective vaccines against
P. salmonis must change, starting with understanding the
biological pathways that the bacterium uses to infect and
replicate in host cells and then defining strategies to block
them. The conventional approach historically used for vaccine
development against P. salmonis has not been the solution to the
problem, which is why salmon producers have no other
alternatives in the field when faced with SRS outbreaks other
than to use the last card they have available, chemotherapy.
Consequently, the time has come for new generation vaccines
and reverse vaccinology in aquaculture: DNA, mRNA, viral
vectors, multiepitope and multiantigenic chimeric vaccines,
among others. However, it is necessary to generate deeper and
more specific knowledge about the interaction between P.
salmonis and fish cells and, of course, to generate the
appropriate regulatory instances for the formal registration of
these new vaccines. The governmental agencies in charge of
regulating the vaccine registration system and the control of its
application in field conditions must advance as fast as the new
knowledge and products from research and innovation are
generated. It is not prudent to develop new generation vaccines
without a regulatory structure in place to authorize and regulate
their commercial use in advance.

From a bacterial-host cell interaction point of view, more is
known about P. salmonis-induced changes in cell invasion and
intracellular survival, but we are only beginning to understand
how the immune system detects and responds to these changes.
Considering these new data, several important gaps emerge:
(1) Does the role of the cytoskeleton in cell-autonomous
immunity differ between phagocytes or epithelial cells? Further
study is required to determine how cytoskeletal components in
cell-autonomous immunity—actin, microtubules, intermediate
filaments and septins—work together during P. salmonis
infection. (2) Immunological speaking, more specific knowledge
should be promoted to understand the mechanisms of processing
and presentation of P. salmonis antigens in APCs, macrophages
and DCs, to T-cells. Further knowledge about fish macrophages
and DCs biology is needed to better understand how P. salmonis
modulates their biology to its own advantage. Does P. salmonis
prevent the presentation of its antigens by MHC-I? Do APCs
activate T cells in the quantity and quality necessary to detect and
eliminate P. salmonis-infected cells? How do APCs activate
salmon T cells, and how do we quantitatively define the efficacy
of the T cell activation process to be considered a protective
Frontiers in Immunology | www.frontiersin.org 18
response? What is the role of B cells as phagocytes and
professional antigen-presenting cells in P. salmonis infection?
How can the in vivo mechanism of action of the main virulence
factors of P. salmonis be blocked? What is the mucosal immune
response against P. salmonis and the role of the microbiota?. (3)
What is the genetic variability of fish in terms of their immune
response against P. salmonis? How do genetic resistance
management and vaccines complement each other in the
control of SRS? Why do these two strategies not reduce the
transmission and prevalence of SRS? Which epidemiological
variables are we not considering in the control of SRS, or which
variables are we not giving enough relevance to? The million-
dollar question will remain whether effective control of SRS will
be achieved even if vaccines that trigger effective CMI responses
are developed. The challenges of inducing CMI responses against
P. salmonis are considerable, as are the challenges presented by
other intracellular pathogens in aquaculture, such as Francisella,
Renibacterium and Edwarsiella. The importance of CMI, which
consists of the production of natural killer cells, CD8 cytotoxic T
cells and CD4+ Th1 cells, is critical for protection against P.
salmonis through proper activation of mononuclear phagocytes.
Strategies to increase resistance to the bacterium could focus on
altering its modulation of cellular homeostasis (cytoskeleton,
apoptosis, or cell cycle progression) or enhancing immune
processes that prevent or slow infection (inflammasome,
antigen recognition and presentation, T cell activation and
proliferation, increased cytotoxic capacity of CD8+ T cells,
oxidative stress), among other pathways. These strategies may
include knockout or CRISPR/Cas modulation in cell line models
or, ultimately, in vivo to interrogate the impact of disruption of
identified genes on genetic resistance.
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